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1 Introduction

Dirac operators were introduced by Dirac [6, 7] in 1928 to treat the elec-
tron quantum mechanically. The idea was that to make this treatment
consistent with Lorentz transformations in special relativity, the Laplace
operator that occurs in the Schrödinger equation should be written as the
square of some first-order differential operator D.
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Dirac considered this problem on four-dimensional space-time with
the Minkowski metric. Let us now consider the case of n-dimensional
Euclidean space. Then the Laplacian is (up to a sign convention)

∆ =

n∑
j=1

−
∂2

(∂xj)2
.

For a first-order operator with constant coefficients of the form

D =

n∑
j=1

aj
∂

∂xj
,

a short computation shows that on smooth functions, we have the desired
relation D2 = ∆ if and only if for all j and k,

ajak + akaj = −2δjk,

where δjk is the Kronecker δ. This is clearly impossible if D and ∆ act
on scalar functions (so the coefficients aj are numbers), so one needs to
consider vector-valued functions (so the coefficients aj are matrices).

Apart from their motivation from physics, Dirac operators have turned
out to be very relevant to several areas of mathematics. These include
representation theory [1, 15], existence of Riemannian metrics of positive
scalar curvature [14], and geometry and topology more broadly. Many
applications involve the Atiyah–Singer index theorem [3, 2], which relates
the space of solutions of the equationDs = 0 to the geometry and topology
of the space under consideration.

The goal of this course is to introduce Dirac operators and their index
theory. We discuss the important special case of Spin-Dirac operators. We
state the Atiyah–Singer index theorem for such operators, and deduce a
consequence to existence of Riemannian metrics of positive scalar curva-
ture.

Prerequisites are basic theory of (Riemannian) manifolds and vector
bundles, and bounded and compact operators on Hilbert spaces.

Standard references on Dirac operators are [4, 8, 9, 13]. We will cite
these in various places.
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Notation

If X is a set, then we write IdX for the identity map on X.
We writeMr(C) for the space of complex r×rmatrices, and End(V) for

the space of linear endomorphisms of a finite-dimensional vector space V .
If M is a smooth manifold, then C∞(M) denotes the space of smooth

functions on M, and C∞
c (M) denotes the space of compactly supported

smooth functions on M. More generally, if V is a finite-dimensional real
vector space, then C∞(M,V) denotes the vector space of smooth functions
fromM to V .

If E → M is a smooth vector bundle, then Γ∞(E) denotes the space of
smooth sections of E, and Γ∞c (E) denotes the space of compactly supported
smooth sections of E. We writeΩk(M;E) := Γ∞(

∧k
T ∗M⊗ E) for the space

of differential forms of degree k with values in E. The endomorphism
bundle of E is denoted by End(E) = E⊗ E∗ →M.

2 Dirac operators

Throughout these notes, M is a smooth manifold of dimension n, with a
Riemannian metric g. (Some constructions and results extend to pseudo-
Riemannian manifolds.) Furthermore, we consider a complex vector bun-
dle S→M of rank r.

Definition 2.1. A first order, linear differential operator on S is a linear map
D : Γ∞(S)→ Γ∞(S) such that every point inM has an open neighbourhood
U that admits local coordinates (x1, . . . , xn) and a trivialisation of S, such
that there are smooth functions a1, . . . , an; , b : U → Mr(C), so that for all
s ∈ Γ∞(S), supported in U,

Ds =

n∑
j=1

aj
∂s

∂xj
+ bs, (2.1)

if s is viewed as a smooth function from an open set in Rn to Cr via the
local coordinates and trivialisation on U.

Lemma 2.2. A linear operator A : Γ∞(S) → Γ∞(S) that commutes with point-
wise multiplication by smooth functions is given by a vector bundle endomor-
phism of S.
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Lemma 2.3. Let D be a first order, linear differential operator on S.

(a) For all f ∈ C∞(M), viewed as an operator on Γ∞(S) by pointwise multi-
plication, the commutator [D, f] is given by a vector bundle endomorphism
of S.

(a) If m ∈ M, and f1, f2 ∈ C∞(M) satisfy dmf1 = dmf2, then the vector
bundle endomorphisms [D, f1] and [D, f2] of S are equal atm.

See Exercise 2.1.

Definition 2.4. LetD be a first order, linear differential operator on S. The
principal symbol of D is the vector bundle homomorphism σD : T

∗M →
End(S) such that for all f ∈ C∞(M) andm ∈M,

σD(dmf) = [D, f]m,

where the right hand side is the value of the endomorphism [D, f] of S at
m.

Lemma 2.5. In local coordinates and a trivialisation, where D is given by (2.1),
we have

σD(ξ) =

n∑
j=1

ajξj

for allm ∈ U and ξ =
∑n

j=1 ξjdmx
j ∈ T ∗mM.

See Exercise 2.2.

Definition 2.6. A first order, linear differential operator D on S is a Dirac
operator if for allm ∈M and ξ ∈ T ∗mM,

σD(ξ)
2 = −gm(ξ, ξ) IdSm .

Here gm is the inner product on T ∗mM induced the the inner product gm on
TmM.

From now on, we will assume that a smooth Hermitian metric (−,−)S
on S is given. We also assume thatM is oriented.

We write volg for the Riemannian volume form associated to g. We
consider the inner product (−,−)L2(S) on Γ∞c (S) given by

(s1, s2)L2(S) :=

∫
M

(s1, s2)S volg, (2.2)
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for all s1, s2 ∈ Γ∞c (S). We denote the completion of Γ∞c (S) in this inner
product by L2(S). A first-order differential operator D∗ is a formal adjoint
of a first-order, linear differential operator D if for all s1, s2 ∈ Γ∞c (S),

(Ds1, s2)L2(S) = (s1, D
∗s2)L2(S).

(Differential operators between different vector bundles and their formal
adjoints can be defined analogously; this is used in Proposition 3.8 and
Theorem 7.16.)

Lemma 2.7. Let S =
∧
T ∗M→M, and D = d, the exterior derivative. Then

(a) d has a formal adjoint d∗, and

(b) d+ d∗ is a Dirac operator.

Proof. For part (a), see Definition 4.1 and (4.4) in [20]. Part (b) is Exercise
2.6.

The operator d+ d∗ is called the Hodge–Dirac operator.
If f ∈ C∞(M), then the endomorphism σD(df) of S defines an opera-

tor on Γ∞c (S). If the operator σD(df) is bounded with respect to the inner
product (2.2), then we denote its operator norm by ‖σD(df)‖. We denote
the Riemannian distance onM by d.

Proposition 2.8. If D is a Dirac operator on M, then for all m,m ′ ∈ M, and
any Hermitian metric on S,

d(m,m ′) = sup{|f(m) − f(m ′)|; f ∈ C∞(M), ‖σD(df)‖ ≤ 1}.

Proof. See Proposition 9.12 in [10] or Formula 1 on page 544 of [5]. See also
Exercise 2.7 for the inequality in one direction, for the other inequality one
can use smooth approximations of the function f(m ′) = d(m,m ′), for a
givenm ∈M.

Exercises

Exercise 2.1. Prove Lemma 2.3. Hint: use the local expression for D.

Exercise 2.2. Prove Lemma 2.5.
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Exercise 2.3. LetM = Rn and S =M×Cr. Let a1, . . . , an ∈Mr(C). Define
D : Γ∞(S)→ Γ∞(S) by (2.1), with b = 0.

(a) Prove thatD is a Dirac operator for the Euclidean metric onM if and
only if for all j, k,

ajak + akaj = −2δjkIr,

where δjk is the Kronecker δ, and Ir is the r× r identity matrix.

(b) Prove that if D is a Dirac operator, then

D2 = −

n∑
j=1

∂2

(∂xj)2
.

(c) In the case n = r = 1, conclude that i d
dx

is a Dirac operator on R.

(d) In the case n = r = 2, let

a1 :=

(
0 i

i 0

)
a2 :=

(
0 1

−1 0

)
.

Use these matrices to prove that the operatorD : C∞(R2,C2)→ C∞(R2,C2)
given by

D

(
s1
s2

)
= 2i

(
∂s2
∂z
∂s1
∂z̄

)
,

for s1, s2 ∈ C∞(R2,C), is a Dirac operator on R2 ∼= C. Here

∂

∂z
:=
1

2

(
∂

∂x
− i

∂

∂y

)
;

∂

∂z̄
:=
1

2

(
∂

∂x
+ i

∂

∂y

)
.

Exercise 2.4. Let D by any first-order differential operator on S, and D∗ a
formal adjoint of D. Prove that for all ξ ∈ T ∗M,

σD∗(ξ) = −σD(ξ)
∗,

where the star on the right is the fibre-wise adjoint of vector bundle endo-
morphisms on S.
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Exercise 2.5. Let V be a finite-dimensional vector space with an inner
product (−,−)V . For all k ∈ Z≥0, consider the inner product on

∧k
V∗

such that
{ej1 ∧ · · ·∧ ejk ; j1 < · · · < jk}

is an orthonormal basis of
∧k
V∗, for an orthonormal basis {e1, . . . , en} of

V∗. Let v ∈ V , and let ξ := (v,−)V ∈ V∗. Let

ξ∧ −:
∧k
V∗ → ∧k+1

V∗;

ιv :
∧k+1

V∗ → ∧k
V∗

be give by exterior multiplication and contraction, respectively. Prove that
these two maps are each other’s adjoints.

Exercise 2.6. Let S =
∧
T ∗M→M, and D = d, the exterior derivative.

(a) Prove that d is a first order, linear differential operator.

(b) Prove that the principal symbol of d is given by

σd(ξ)ω = ξ∧ω,

for allm ∈M, ξ ∈ T ∗mM andω ∈
∧
T ∗mM.

(d) Prove part (b) of Lemma 2.7. (Hint: use earlier exercises.)

Exercise 2.7. Let D be a Dirac operator onM.

(a) Prove that for all f ∈ C∞(M),

‖σD(df)‖ = sup
m∈M
‖dmf‖,

where ‖dmf‖ is the operator norm of dmf as a linear map from TmM

to R.

(b) Prove that for allm,m ′ ∈M, and all f ∈ C∞(M) with ‖σD(df)‖ ≤ 1,

|f(m) − f(m ′)| ≤ d(m,m ′).
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3 Clifford actions

Definition 3.1. A Clifford action is a vector bundle homomorphism c : T ∗M→
End(S) such that for allm ∈M and ξ ∈ T ∗mM,

c(ξ)2 = −g(ξ, ξ) IdSm .

If c is a Clifford action, then we denote the composition of the isomor-
phism TM ∼= T ∗M defined by gwith c by c as well.

A connection on S is Hermitian if for all s1, s2 ∈ Γ∞(S) and vector fields
v onM,

v((s1, s2)S) = (∇vs1, s2)S + (s1,∇vs2)S
We denote the Levi–Civita connection on TM for g by∇g.

Definition 3.2. Let c be a Clifford action. A Clifford connection on S is a
Hermitian connection ∇ such that for all vector fields v and w on M, and
all s ∈ Γ∞(S),

∇vc(w)s = c(w)∇vs+ c(∇gvw)s.

If c is a Clifford action on S, then we also write c for the map from
T ∗M⊗ S to S given by

c(ξ⊗ x) = c(ξ)x,
form ∈M, ξ ∈ T ∗mM and x ∈ Sm.

Definition 3.3. Given a Clifford action c and a Clifford connection∇ on S,
the associated Dirac operator is the composition

D : Γ∞(S)
∇
−→ Γ∞(T ∗M⊗ S) c

−→ Γ∞(S).

Lemma 3.4. The Dirac operator associated to a Clifford action and a Clifford
connection is indeed a Dirac operator.

See Exercise 3.2.

Lemma 3.5. Let U ⊂ M be an open set admitting a local frame {e1, . . . , en} for
TM. Let {e1, . . . , en} be the dual frame for T ∗M. Then, on U, the Dirac operator
associated to a Clifford action c and a Clifford connection∇ is given by

D|Γ∞(S|U) =

n∑
j=1

c(ej)∇ej .

8



See Exercise 3.3.

Example 3.6. The Dirac operatorD = d+d∗ in Lemma 2.7 is associated to
a Clifford action and a Clifford connection; see (4.16) in [20].

Lemma 3.7. Let D be the Dirac operator associated to a Clifford action and a
Clifford connection. Then for all s1, s2 ∈ Γ∞c (S),

(Ds1, s2)L2(S) = (s1, Ds2)L2(S).

Proof. See the proposition on page 69 of [8], or Proposition 3.44 in [4].

Proposition 3.8. Let c be a Clifford action on S, and∇ a Clifford connection. Let
D be the Dirac operator associated to these data. Let RS be the curvature tensor of
∇. Then in terms of any local orthonormal frame {e1, . . . , en} of TM, we locally
have

D2 = ∇∗∇+
1

2

∑
j,k

c(ej)c(ek)R
S(ej, ek), (3.1)

for a formal adjoint∇∗ : Ω1(M;S)→ Γ∞(S) of∇.

Proof. See page 73 of [8].

Exercises

Exercise 3.1. Let D be a Dirac operator on S. Use D to define a Clifford
action on S.

Exercise 3.2. Prove Lemma 3.4.

Exercise 3.3. Prove Lemma 3.5.

4 Essential self-adjointness and resolvents

Definition 4.1. Let H be a Hilbert space, and W ⊂ H a dense linear sub-
space. Let T : W → H be a linear map.

(a) The operator T is closable if the closure of its graph in H × H is the
graph of a linear map T̄ . Then T̄ is the closure of T .
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(b) The operator T is symmetric if for all v,w ∈ W, we have (Tv,w)H =
(v, Tw)H.

(c) The operator T is self-adjoint if it is symmetric, and all vectors v ∈ H
such that the linear functional w 7→ (v, Tw) on W is bounded lie in
W.

(d) The operator T is essentially self-adjoint if it is closable, and its closure
is self-adjoint.

Proposition 4.2. Let T : W → H be a self-adjoint operator. Then the operators
T ± i : W → H are invertible, with bounded inverses.

See Theorem VIII.3 in [16].
Let D be the Dirac operator associated to a Clifford action and a Clif-

ford connection. By Lemma 3.7, the operator

D : Γ∞c (S)→ L2(S) (4.1)

is symmetric. In fact, something stronger is true ifM is complete.

Theorem 4.3 (Wolf, 1973). IfM is complete, then the operator (4.1) is essentially
self-adjoint.

Proof. The original result is in [19]. See also Proposition 10.2.10 in [11].

For k = 0, 1, . . ., let Wk
D(S) be the completion of Γ∞c (S) in the inner

product

(s1, s2)Wk
D(S) :=

k∑
j=0

(Djs1, D
js2)L2(S).

Lemma 4.4. The closure of the operator (4.1) is the continuous extension of (4.1)
toW1

D(S).

See Exercise 4.1.

Definition 4.5. Suppose that M is complete. Then the closure of (4.1) is
invertible by Proposition 4.2 and Theorem 4.3. The resolvent of the operator
(4.1) is the bounded operator

(D̄+ i)−1 : L2(S)→ L2(S).
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Exercises

Exercise 4.1. Let D be the Dirac operator associated to a Clifford action
and a Clifford connection, viewed as an operator from Γ∞c (S) to L2(S).

(a) Let p : graph(D) → Γ∞c (S) be projection onto the first factor. Prove
that p extends to a unitary isomorphism from graph(D) toW1

D(S).

(b) Prove that the domain of D̄ isW1
D(S).

(c) Prove Lemma 4.4.

Exercise 4.2. We prove Theorem 4.3 in the example where M = S1, S =
S1 × C and D = i d

dx
.

(a) Prove directly that the operator (4.1) is symmetric in this example.

(b) Use the Fourier transform and Lemma 4.4 to prove that D is essen-
tially self-adjoint.

5 The index of a Dirac operator

Let D be a Dirac operator associated to a Clifford action and a Clifford
connection.

Theorem 5.1 (Rellich lemma). Suppose that M is compact. For all k, the in-
clusion mapWk+1

D (S)→Wk
D(S) is a compact operator.

Proof. See 10.4.3 and 10.4.4 in [11] for the case k = 0, or Lemmas 1.3.4(a)
and 1.3.5 in [9] in general.

Corollary 5.2. IfM is compact, then the resolvent ofD is a compact operator on
Wk
D(S) for all k.

See Exercise 5.3.

Theorem 5.3 (Atkinson’s lemma). Suppose that H1 and H2 are Hilbert spaces,
and that T : H1 → H2 is a bounded operator. Then the following are equivalent:

1. there is a bounded operatorQ : H2 → H1 such that the operatorsQT− IdH1

on H1 and TQ− IdH2
on H2 are compact;
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2. im(T) is closed and ker(T) and H2/ im(T) are finite-dimensional.

Proof. See Remark 2.1.3 and Theorem 2.1.4 in [11].

Definition 5.4. An operator T as in Theorem 5.3 is a Fredholm operator. Its
index is

index(T) = dim ker(T) − dimH2/ im(T).

Corollary 5.5. Suppose thatM is compact. Then the operator

D̄ : W1
D(S)→ L2(S) (5.1)

is Fredholm.

See Exercise 5.4.

Theorem 5.6 (Elliptic regularity). For any Dirac operator D, the kernel of

D̄ : W1
D(S)→ L2(S),

and the kernel of the adjoint of D̄ as a bounded operator between the Hilbert spaces
W1
D(S) and L2(S), lie in Γ∞(S).

This is a special case of elliptic regularity; for the general version see
Lemma 1.3.5 in [9]. In the setting of Theorem 5.6, if s ∈ W1

D(S) satisfies
Ds = 0, then it is immediate that s ∈

⋂∞
j=0W

k
D(S). It then remains to

show that the latter space consists of smooth sections, using the Gårding
inequality (see Lemma 1.3.1(c) in [9] or 10.4.4 in [11]) and the Sobolev em-
bedding theorem (see Lemma 1.3.4(b) in [9]).

Because D̄ is self-adjoint, its index is zero. (See Exercise 5.5.) To still
obtain a nontrivial index from D, we suppose that the vector bundle S
is Z/2Z-graded; i.e. that it decomposes as a direct sum of sub-bundles
S = S+ ⊕ S−. Suppose that the Clifford connection used to define D in-
terchanges S+ and S−, whereas the Clifford action preserves the grading.
Then D maps sections of S+ to sections of S− and vice versa. We write D±

for its restrictions
D± : Γ∞c (S±)→ L2(S∓),

and D̄± for the closure of these operators, i.e. their continuous extensions
toW1

D(S
±).
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Lemma 5.7. Suppose thatM is compact. Then the operator D̄+ is Fredholm, and

index(D̄+) = dim ker(D+) − dim ker(D−).

See Exercise 5.6.

Example 5.8. Suppose that M is compact. Let S =
∧
T ∗M and D = d + d∗

as in Lemma 2.7. Consider the grading on S by parity of degrees: S+ is
the direct sum of the even-degree exterior powers of T ∗M, and S− is the
direct sum of it odd-degree exterior powers. By the Hodge theorem (see
Theorem 6.11 in [18]; here the Rellich lemma and elliptic regularity are
used),

ker(D+) =
⊕
k even

HkdR(M);

ker(D−) =
⊕
k odd

HkdR(M).

So index(D̄+) =
∑

k(−1)
k dimHkdR(M) is the Euler characteristic ofM.

Exercises

Exercise 5.1. We prove the Rellich lemma in an example. Let M = S1,
S = S1 × C and D = i d

dθ
. Let Ŵ1

D(S) be the space of f ∈ l2(Z) such that

n 7→ (1+ n2)1/2f(n)

lies in l2(Z). Consider the inner product on this space given by

(f1, f2)Ŵ1
D(S) :=

∑
n∈Z

f1(n)f̄2(n)(1+ n
2).

(a) Prove that Ŵ1
D(S) is a Hilbert space with this inner product, and that

the Rellich lemma for k = 0 in this case is equivalent to compactness
of the inclusion map j : Ŵ1

D(S) ↪→ l2(Z).

(b) For n ∈ N, let pn : Ŵ1
D(S)→ l2(Z) be given by

(pn(f))(k) =

{
f(k) if |k| ≤ n;
0 if |k| > n.
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Prove that, in the operator norm of bounded operators from Ŵ1
D(S)

to l2(Z),

‖j− pn‖B(Ŵ1
D(S),l2(Z)) ≤

1

(1+ (n+ 1)2)1/2
.

(c) Prove the Rellich lemma in this case. (You may use that a bounded
operator is compact if and only if it can be approximated in operator
norm by operators with finite-dimensional images.)

Exercise 5.2. We show with an example that compactness is important in
Theorem 5.1. Let M = R and D = i d

dx
, on S = R × C. Let s ∈ C∞

c (R). For
j ∈ N, define sj ∈ C∞

c (R) by sj(x) = s(x− j).

(a) Prove that the sequence (sj)
∞
j=1 is bounded inW1

D(S).

(b) Prove that the sequence (sj)
∞
j=1 does not have a convergent subse-

quence in L2(S).

(c) Prove that the inclusionW1
D(S)→ L2(S) is not a compact operator.

Exercise 5.3. Prove Corollary 5.2.

Exercise 5.4. Prove Corollary 5.5.

Exercise 5.5. Let H1 and H2 be Hilbert spaces, and T : H1 → H2 a bounded
linear map. Suppose that im(T) is closed.

(a) Prove that the inclusion map ker(T ∗) ↪→ H2 induces a linear iso-
morphism ker(T ∗) ∼= H2/ im(T). (Hint: because im(T) is closed,
H2 = im(T)⊕ im(T)⊥.)

(b) Prove that the index of a self-adjoint Fredholm operator is zero.

Exercise 5.6. Consider the setting of Lemma 5.7. We view D̄+ as a bounded
operator fromW1

D(S
+) to L2(S−).

(a) Prove that ker((D̄+)∗) = ker(D−).

(b) Prove that L2(S−)/ im(D̄+) is finite-dimensional.

(c) Prove Lemma 5.7.
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6 Spin-groups

For n ≥ 3, the group Spin(n) is the universal cover of SO(n). Because
π1(SO(n)) = Z/2Z for n ≥ 3, Spin(n) is a double cover of SO(n). It can be
constructed in terms of Clifford algebras.

Definition 6.1. Let V be a finite-dimensional real vector space, with a
quadratic form Q. The Clifford algebra Cl(V,Q) of V with respect to Q is
the quotient of the tensor algebra

T(V) :=

∞⊕
j=0

V⊗j

(where V⊗j is the tensor product of j copies of V if j ≥ 1, and V⊗0 := R),
with the tensor product as multiplication, by the two-sided ideal gener-
ated by the set

{v⊗ v−Q(v); v ∈ V}.

If V = Rn and Q is minus the Euclidean norm-squared function, then we
write Cln := Cl(Rn, Q).

The Clifford algebra Cl(V,Q) is finite-dimensional, of dimension 2dim(V);
see the second proposition on page 7 of [8]. The inclusion map V = V⊗1 ↪→
T(V) induces an injective linear map V ↪→ Cl(V,Q); see the corollary on
page 5 pf [8]. We will use this map to identify V with a linear subspace of
Cl(V,Q).

Definition 6.2. The group Spin(n) consists of products in Cln of even num-
bers of unit vectors in Rn.

Lemma 6.3. The set Spin(n) is a group with respect to the multiplication in Cln.

See Exercise 6.1.

Proposition 6.4. Let V be a finite-dimensional real vector space, with a quadratic
form Q. There is a unique linear map γ : Cl(V,Q) → Cl(V,Q) such that γ2 =
IdCl(V,Q), γ|V = IdV . and for all x, y ∈ Cl(V,Q),

γ(x · y) = γ(y) · γ(x).

Proof. See the proposition on page 6 of [8].
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Lemma 6.5. For all v ∈ Rn and x ∈ Spin(n),

x · v · γ(x) ∈ Rn.

Proof. See the lemma on page 15 of [8].

Proposition 6.6. For all x ∈ Spin(n), the map λ(x) : Rn → Rn given by

λ(x)v = x · v · γ(x),

for v ∈ Rn, lies in SO(n). The map λ : Spin(n) → SO(n) is a surjective group
homomorphism, and ker(λ) = {−1, 1}. The group Spin(n) is connected if n ≥ 2,
and simply connected if n ≥ 3.

Proof. See the proposition on page 16 of [8].

A certain standard representation of Spin(n) will play an important
role. We discuss the most relevant case, where n is even. Consider the
matrices

I2 :=

(
1 0

0 1

)
;

A−1 :=

(
i 0

0 −i

)
;

A1 :=

(
0 i

i 0

)
;

B :=

(
0 −i
i 0

)
.

Proposition 6.7. Suppose that n is even. There is a unique isomorphism of
complex algebras

Cln⊗C→M2(C)⊗n/2 = End(C2n/2

)

mapping the jth standard basis vector of Rn to

I2 ⊗ · · · ⊗ I2 ⊗A(−1)j ⊗ B⊗ · · · ⊗ B, (6.1)

where the numbers of factors B is [(j− 1)/2].

Proof. See the proposition on page 13 of [8].
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Definition 6.8. Suppose that n is even. The vector space C2n/2 , equipped
with the representation of Cln⊗C in Proposition 6.7, is denoted by ∆n.

Lemma 6.9. Suppose that n is even. Let {e1, . . . , en} be an oriented orthonormal
basis of Rn. The element

ike1 · · · en ∈ Cln (6.2)

squares to 1 and lies in the centre of Cln.

See Exercise 6.6. For even n, let α ∈ End(∆n) be the image of (6.2)
under the representation from Proposition 6.7. By Lemma 6.9, the only
possible eigenvalues of α are±1, and α commutes with the representation
of Cln⊗C. So α defines a Cln⊗C-invariant Z/2Z-grading

∆n = ∆+
n ⊕ ∆−

n , (6.3)

where ∆±n is the ±1 eigenspace of α.

Exercises

Exercise 6.1. Prove that the subset Spin(n) ⊂ Cln is a group.

Exercise 6.2. Verify explicitly that Spin(2) is the circle, and that the map
λ : Spin(2) → SO(2) in Proposition 6.6 maps an element of the circle to its
square.

Exercise 6.3. Let V be a finite-dimensional real vector space with an inner
product (−,−)V . Let Q(v) = −(v, v)V . Let {v1, . . . , vn} be an orthonormal
basis of V . Prove that in Cl(V,Q),

vjvk + vkvj = −2δjk,

for all j, k.

Exercise 6.4. Let Ej be the tensor product of matrices (6.1). Prove that
EjEk+EkEj = −2δjk,. Explain why this relation is necessary for Proposition
6.7 to be true.

Exercise 6.5. Write out the representation of Spin(2) in ∆2 = C2 explicitly.

Exercise 6.6. Prove Lemma 6.9.

17



7 Spin-Dirac operators

We still suppose that M is oriented. Let SOF(TM) → M be the oriented,
orthonormal frame bundle of M. Its fibre at m ∈ M is the set of ori-
ented, orthogonal linear isomorphisms Rn → TmM. This is a principal
SO(n)-bundle. The fibred product SOF(TM) ×SO(n) Rn is the quotient of
the Cartesian product SOF(TM)× Rn by the action by SO(n) given by

x · (f, v) := (f ◦ x−1, xv),

for x ∈ SO(n), f ∈ SOF(TM) and v ∈ Rn. This is a vector bundle over
M. The map (f, v) 7→ f(v) descends to a vector bundle isomorphism
SOF(TM)×SO(n) Rn ∼= TM. Under this isomorphism, the Riemannian met-
ric onM corresponds to the Euclidean inner product on Rn.

A Spin-structure onM is a variation on this construction, where SO(n)
is replaced by Spin(n). If this exists, then it allows us to define an impor-
tant type of Dirac operator: the Spin-Dirac operator.

If G is a Lie group, P → M a principal G-bundle, and V a finite-
dimensional representation space of G, then we write P ×G V for the cor-
responding associated vector bundle overM. This is the quotient of P×V
by the diagonal action by G. If p ∈ P and v ∈ V , then we denote the class
of (p, v) in P ×G V by [p, v]. We consider Rn as a representation space of
Spin(n) via the covering homomorphism Spin(n)→ SO(n).

Definition 7.1. A Spin-structure on M is a pair (P,ψ), where P → M is a
principal Spin(n)-bundle, and ψ : P ×Spin(n) Rn → TM an oriented, isomet-
ric vector bundle isomorphism with respect to the standard orientation
and Euclidean metric on Rn. A Spin-manifold is a manifold together with
a Spin-structure.

The second Stiefel-Whitney class ofM is an invariantw2(M) ∈ H2(M;Z/2Z)
depending on a choice of orientation, see Definition II.1.6 in [13].

Theorem 7.2. There is a Spin-structure on M compatible with a given orienta-
tion if and only if w2(M) = 0.

Proof. See Theorem II.2.1 in [13] or Lemma 3.3.1(a) in [9].

Example 7.3. Every manifold M with trivialisable tangent bundle has the
Spin-structure (M × Spin(n), ψ), where ψ is the vector bundle isomor-
phism

ψ : (M× Spin(n))×Spin(n) Rn ∼=M× Rn ∼= TM.
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This includes all Lie groups.

Example 7.4. The sphere Sn ∼= SO(n + 1)/ SO(n) has the Spin-structure
(Spin(n+1), ψ), where the double covering map Spin(n+1)→ SO(n+1)
induces

ψ : Spin(n+ 1)×Spin(n) Rn → SO(n+ 1)×SO(n) Rn ∼= TSn.

Example 7.5. A complex manifold M has a Spin-structure of and only if
the image of c1(TM) ∈ H2(M;Z) in H2(M;Z/2Z) is zero. Indeed, this im-
age is w2(M); see Remark II.1.8 in [13].

Example 7.6. The complex projective space CPk admits a Spin-structure
if and only if k is odd; see the proposition on page 42 of [8], or Lemma
3.3.2(c) in [9].

Definition 7.7. Suppose that n is even. Suppose that (P,ψ) is a Spin-
structure on M. The spinor bundle associated to this structure is SP :=
P ×Spin(n) ∆n →M.

The Clifford action c : TM→ End(SP) is defined by

c(ψ([f, v]))[f, a] := [f, c(v)a], (7.1)

for f ∈ P, v ∈ Rn and a ∈ ∆n. On the right hand side, c(v) is the action
by v ∈ Rn ↪→ Cln ↪→ Cln⊗C on ∆n from Proposition 6.7. Also, we have
identified T ∗M ∼= TM via the Riemannian metric.

We consider the Z/2Z-grading on SP induced by (6.3).

To construct a Dirac operator on a spinor bundle, we will use a Clifford
connection canonically induced by the Levi–Civita connection.

Definition 7.8. Let G be a Lie group, and P →M a principal G-bundle. A
connection one-form on P is anω ∈ Ω1(P)⊗ g such that

1. for all g ∈ G, we have (g∗ ⊗Ad(g))ω = ω; and

2. for all X ∈ g,
〈ω,XP〉 = X.

Here XP is the vector field on P induced by X ∈ g; at p ∈ P it equals

XPp :=
d

dt

∣∣∣∣
t=0

exp(tX)p.
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If {e1, . . . , en} is a local orthonormal, oriented frame for TM, on an open
set U, then we writeωj,k for the one-forms on U such that for all j,

∇gej =
n∑
k=1

ωj,k ⊗ ek.

The frame {e1, . . . , en} defines a section of SOF(TU), which we denote by e.
Let {eRn

1 , . . . , e
Rn

n } be the standard basis of Rn. Let Ej,k ∈ so(n) be the
basis element given by

Ej,k(v) = vje
Rn

k − vke
Rn

j

for v = (v1, . . . , vn) ∈ Rn.

Proposition 7.9. There is a unique connection one-form ω on SOF(TM) such
that for all local orthonormal, oriented frames {e1, . . . , en} for TM,

e∗(ω|SOF(TU)) =
∑
j<k

ωj,k ⊗ Ej,k ∈ Ω1(U)⊗ so(n).

Proof. See Proposition II.4.4 in [13].

Fix a Spin-structure (P,ψ) on M for the rest of this section, assuming
it exists. If p ∈ Pm, then we obtain an oriented, orthogonal linear isomor-
phism q(p) : Rn → TmM, given by

q(p)v = ψ([p, v]),

for v ∈ Rn. This defines a double covering map q : P → SOF(TM). Let
ω ∈ Ω1(SOF(TM)) ⊗ so(n) be any connection one-form on SOF(TM).
Because Spin(n) is a double cover of SO(n), the Lie algebra spin(n) of
Spin(n) equals so(n). Hence we obtain

q∗ω ∈ Ω1(P)⊗ spin(n).

Lemma 7.10. This element q∗ω is a connection one-form on P.

See Exercise 7.2.
Let G be a Lie group, P → M a principal G-bundle, and V a finite-

dimensional representation space of G. Let ω be a connection one-form
on P. Via the derivative of π, also denoted by π, this induces

π ◦ω ∈ (Ω1(P)⊗ End(V))G.
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Define
d+ π ◦ω : (C∞(P)⊗ V)G → (Ω1(P)⊗ V)G

by
((d+ π ◦ω)s)(p) = dps+ (π ◦ω)p(s(p)) ∈ T ∗pP ⊗ V,

for all s ∈ (C∞(P) ⊗ V)G and p ∈ P. Let E = P ×G V → M be the vector
bundle associated to P and π. We write (Ω1(P) ⊗ V)Ghor for the space of
ω ∈ (Ω1(P)⊗ V)G such that for all X ∈ g,

〈ω,XP〉 = 0.

Proposition 7.11. The image of d + π ◦ ω lies in (Ω1(P) ⊗ V)Ghor. Via the
isomorphisms

Γ∞(E) ∼= (C∞(P)⊗ V)G;
Γ∞(T ∗M⊗ E) ∼= (Ω1(P)⊗ V)Ghor,

the operator d+ π ◦ω defines a connection on E.

Definition 7.12. In the setting of Proposition 7.11, the connection on E
defined by d+ π ◦ω is denoted by∇ω.

Now let ω be as in Proposition 7.9. Let q∗ω be as in Lemma 7.10.
Applying Proposition 7.11 with G = Spin(n) and V = ∆n, we obtain a
connection∇q∗ω on SP.

Definition 7.13. The connection ∇q∗ω is the connection on SP induced by the
Levi–Civita connection.

Proposition 7.14. The connection∇q∗ω on SP is a Clifford connection.

Proof. See Proposition II.4.11 in [13].

Definition 7.15. The Dirac operator on SP associated to c and ∇q∗ω as in
Definition 3.3 is the Spin-Dirac operator on SP.

Let κ be the scalar curvature associated to g via ∇g. In terms of the
Riemann tensor R, we have for any m ∈ M and any local orthonormal
frame {e1, . . . , en} for TM nearm,

κ(m) =

n∑
j,k=1

g(R(ej, ek)ek, ej).
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Alternatively, if BMr (m) denotes the geodesic ball in M with radius r and
centre m, and BRn

r (0) is the Euclidean ball of radius r around the origin,
then for allm ∈M, κ(m) is determined by

volBMr (m)

volBRn

r

= 1−
κ(m)

6(n+ 2)
r2 + O(r4)

as r ↓ 0. This can be proved via an asymptotic expansion of the Rieman-
nian density in suitable coordinates; see Lemma 5.3.4 in [17].

Theorem 7.16 (Lichnerowicz). If D is the Spin-Dirac operator, then

D2 = ∇∗∇+ κ/4,

for a formal adjoint∇∗ of∇.

Proof. See Theorem II.8.8 in [13], the proposition on page 74 of [8], or [14].
The idea is to prove that the curvature term in (3.1) equals κ/4.

Corollary 7.17. If M is compact and κ is positive everywhere, then ker(D) =
{0}.

See Exercise 7.4.

Exercises

Exercise 7.1. Prove that (7.1) is a well-defined Clifford action on SP.

Exercise 7.2. Prove Lemma 7.10.

Exercise 7.3. Suppose that n is even. Consider the trivial Spin-structure
on Rn from Example 7.3.

(a) Prove that the Clifford connection on S = Rn×∆n → Rn is the trivial
connection d⊗ 1∆n .

(b) For j = 1, . . . , n, let γj ∈ M2n/2(C) be the image of (6.1). Prove that
the Spin-Dirac operator on Rn is

D =

n∑
j=1

γj
∂

∂xj
: C∞(Rn, ∆n)→ C∞(Rn, ∆n).

Exercise 7.4. Prove Corollary 7.17.
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8 The Atiyah–Singer index theorem and positive
scalar curvature

There is a well-defined fibre-wise trace map

tr : Γ∞(End(TM))→ C∞(M). (8.1)

Indeed, in terms of a local frame for TM, a section of End(TM) is a matrix-
valued function. Its trace does not depend on the local frame by conjugation-
invariance of the matrix trace, and hence is well-defined globally.

For every k, (8.1) extends to a unique map

tr : Ωk(M;End(TM))→ Ωk(M) (8.2)

such that for all α ∈ Ωk(M) and s ∈ Γ∞(End(M)),

tr(α⊗ s) = tr(s)α.

There is a unique bilinear product

Ωk(M;End(TM))×Ωl(M;End(TM))→ Ωk+l(M;End(TM))

such that for all α1, α2 ∈ Ωk(M) and s1, s2 ∈ Γ∞(End(M)),

(α1 ⊗ s1)(α2 ⊗ s2) = α1 ∧ α2 ⊗ s1 ◦ s2.

Let f(x) =
∑∞

j=0 ajx
j be any formal power series. Then for anyω ∈ Ωk(M;End(TM)),

the terms in the sum

f(ω) =

∞∑
j=0

ajω
j ∈
⊕
j

Ωkj(M;End(TM)),

for which kj > n are zero. So this sum is well-defined, without conver-
gence issues.

Let â be the Taylor series of the function

x 7→ 1

2
log

x/2

sinh(x/2)
.

Then we obtain a map

Â : Ω2(M;End(TM))→⊕
j

Ω4j(M), (8.3)
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given by
Â(ω) = exp(tr(â(ω))).

The exponential function on the right is defined via the Taylor series of the
exponential map. The degrees of forms in the image of (8.3) are divisible
by 4 because the power series â only contains even powers of x.

Suppose thatM is compact and even-dimensional. Let R ∈ Ω2(M;End(TM))
be the Riemann curvature tensor associated to g via ∇g. Let∫

M

Â(R) (8.4)

be the integral overM of the top-degree part of Â(R); this is zero if dim(M)
is not divisible by 4.

Proposition 8.1. The number (8.4) is independent of g.

Proof. See Theorem 1.11 in [20]. The idea is that if R ′ is the curvature for
a different Riemannian metric, then Â(R) − Â(R ′) is exact. The claim then
follows from Stokes’ theorem.

Definition 8.2. The number

Â(M) =
1

(2πi)n/2

∫
M

Â(R)

is the Â-genus ofM.

Remark 8.3. The construction of invariants like the Â-genus is the subject
of Chern–Weil theory [20].

Theorem 8.4 (Atiyah–Singer, 1963). Suppose thatM is a compact, even-dimensional
Spin-manifold. Let D be the Spin-Dirac operator onM. Then

index(D̄+) = Â(M).

Proof. See Theorem 5.3 in [2], or page 151 of [4].

Corollary 8.5. The Â-genus of a compact Spin-manifold is an integer.

Example 8.6. If k is even, then the complex projective space CPk is not
Spin (see Example 7.6), and its Â-genus is not an integer. For example,
Â(CP2) = −1/8 (see the example on page 11 of [8]).
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Kazdan and Warner showed that any smooth function on a compact
manifold of dimension at least 3 that is negative somewhere occurs as the
scalar of some Riemannian metric, see Theorem 1.1. in [12]. It still an open
question what compact manifolds admit Riemannian metrics whose scalar
curvature is positive everywhere. The following result by Lichnerowicz
[14] initiated the use of index theory of Dirac operators to study this prob-
lem.

Corollary 8.7 (Lichnerowicz, 1963). If a compact Spin-manifoldM has nonzero
Â-genus, then it does not admit any Riemannian metric with positive scalar cur-
vature.

Proof. This follows from Lemma 5.7, Corollary 7.17 and Theorem 8.4.
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