Arthemy Kiselev
Arthemy Kiselev (1978) did his (under)graduate study in mathematical physics and pure mathematics in parallel at the Lomonosov Moscow State University and Independent University of Moscow, respectively. He obtained the PhD degree in mathematical physics in 2004 at Lomonosov MSU; professor J.Krasil’shchik from IUM was the promotor of this thesis. In 2004-2007 Kiselev held post-doctoral positions in Montreal and at Brock University (Canada), also Lecce (Italy) and METU in Ankara, Turkey; he obtained a number of fellowships for research visits at the Max Planck Institute for Mathematics (Bonn), IHES (Bures-sur-Yvette, France), and Utrecht. Kiselev also worked part-time in 2005-2007 at a position of assistant professor in Ivanovo State Power University (Russia), where he was appointed associate professor in 2007. Since 2009 Kiselev holds the title of Docent at chair of higher mathematics.
After three years at Utrecht University as NWO VENI post-doctoral researcher in 2008-2010, Kiselev moved to the Johann Bernoulli Institute in Groningen for his current appointment as docent at the chair of algebra. He is supervising two PhD students at JBI.
Research interests of Arthemy Kiselev are focussed on the following problems in mathematical physics: geometry of the BV- and deformation quantisation of field theories, (non)commutative geometry of interaction, quantisation of exactly solvable models and other issues of integrability in the infinite dimension. The most recent published result by Kiselev is the intrinsic self-regularisation of the Batalin-Vilkovisky formalism, which is achieved via an in-depth description of geometry of iterated variations.
Apart from writing journal or conference papers, Kiselev is the author of five booklets, including a collection of 200 research problems in mathematical modelling in physics. Kiselev has given ca. 100 talks at research seminars; he spoke at a number of workshops and colloquia, as well as did he lecture at academic research institutes (e.g., Bogolyubov ITP NAS Ukraine).
Additional information